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1 Goal:

To introduce the idea of hedging a Euro-style derivative in continuous time and defin-

ing the Greeks in option pricing.

2 Motivation:

Suppose an option seller sells a Euro-style derivative that pays VT = φ(ST ) at time

T . We already learned that he should charge V0 = E(e−rTφ(ST )) for the option at

time 0.

Now the question is what should the option seller should do with V0? He is

obligated to pay out φ(ST ) (For example, φ(ST ) = (ST − K)+ if the derivative is a

Euro Call option) at time T . Certainly he cannot just invest V0 in the bank and hope

that he will have enough money to cover the random amount φ(ST ) that needs to be

paid out at time T . Clearly he needs to invest V0 in a portfolio that is a combination

of the stock S and the money market.

But how much should he hold in stocks? Recall from the binomial tree model, we

learned that to hedge a Euro-style derivative, at any time k the option seller should

hold ∆k := Vk+1−Vk
Sk+1−Sk

shares of stock and put the rest of his money into the money

market. Then at the expiration time n, the value of his portfolio will be exactly equal

to Vn, the amount that needs to be paid out. We will apply this idea in continuous

time as well. This is the idea of Delta hedging.
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3 Delta hedging:

The idea: We divide the interval [0, T ] into n subintervals, each with length δ (δ small).

We denote each grid point of these subintervals by tk, 0 = t0 < t1 < ... < tn = T .

We construct a self-financing portfolio that consists of the underlying stock and the

money market as followed: At each time tk, we will hold ∆k := ∂V
∂S

(tk) shares of stock.

We claim that in this way, the value of the portfolio at time T will approximately be

equal to the value of the derivative VT = φ(ST ).

Reason: By Ito’s formula

Vtk+1
− Vtk ≈

(∂V
∂t

(tk) +
1

2

∂2V

∂S2
(tk)σ

2S2
tk

)
δ +

∂V

∂S
(tk)(Stk+1

− Stk).

Since Vt satisfies the Black-Scholes PDE, we have

∂V

∂t
(tk) +

1

2

∂2V

∂S2
(tk)σ

2S2
tk

= −∂V
∂S

rS(tk) + rV (tk).

Plug this in the above:

Vtk+1
− Vtk ≈

(
− ∂V

∂S
rS(tk) + rV (tk)

)
δ +

∂V

∂S
(tk)(Stk+1

− Stk)

=
(
V (tk)−

∂V

∂S
S(tk)

)
rδ +

∂V

∂S
(tk)(Stk+1

− Stk).

Now suppose at time tk we have a portfolio π that satisfies π(tk) ≈ V (tk). We

purchase ∂V
∂S

(tk) shares of stock, which leaves us with π(tk)− ∂V
∂S
S(tk) to put into the

bank. At time tk+1 the value of our portfolio is (because of self-financing)

π(tk+1) = π(tk) +
(
π(tk)−

∂V

∂S
S(tk)

)
rδ +

∂V

∂S
(tk)(Stk+1

− Stk)

Note that we’re in discrete time so the growth in 1 period of time of the money

market portion is the interest rate times the length of that period, which is δ.

But since π(tk) ≈ V (tk) we have

π(tk+1) ≈ V (tk) +
(
V (tk)−

∂V

∂S
S(tk)

)
rδ +

∂V

∂S
(tk)(Stk+1

− Stk)

≈ V (tk+1).

So the approximation extends to the next period. The quantity ∂V
∂S

, the first partial

derivative of V with respect to S, is thus seen to be very important in hedging, and

it’s called the Delta, in symbol ∆, the first Greek we encounter in this section.

2



4 Computing ∂V
∂S :

The above derivation is valid for any Euro-style derivative. However, the relevant

question is: how much is exactly ∂V
∂S

? Or how to compute the Delta of a certain

Euro derivative? This is difficult in general and usually one needs to use numerical

techniques. However, when we specialize to certain cases of VT = φ(ST ), for example

φ(ST ) = SkT for some integer k then explicit computation of the Delta is posssible. In

this section we show how to compute the Delta of the most important derivative we

encounter in this class: the Euro-Call option.

Recall that the Black-Scholes formula gives for a Euro call that pays (ST −K)+

at time T :

V (t, St) = StN(d1(t, St))−Ke−r(T−t)N(d2(t, St)),

d1(t, St) =
(r + 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t

d2(t, St) =
(r − 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t

It is also easy to see that

∂

∂S
d2(t, St) =

∂

∂S
d1(t, St) =

1

Stσ
√
T − t

.

Therefore,

∂V

∂S
(t) = N(d1(t, St)) + StφZ(d1(t, St))

1

Stσ
√
T − t

−Ke−r(T−t)φZ(d2(t, St))
1

Stσ
√
T − t

.

We claim that

φZ(d1(t, St)) = Ke−r(T−t)φZ(d2(t, St))
1

St
.

To see this, note that d1(t, St) = d2(t, St) + σ
√
T − t. Therefore,

φZ(d1) = φZ
(
d2 + σ

√
T − t

)
=

1√
2π

exp
(
− (d2 + σ

√
T − t)2

2

)
= φZ(d2) exp

(−2d2σ
√
T − t− σ2(T − t)

2

)
.

One can check that

2d2(t, St)σ
√
T − t+ σ2(T − t) = 2

(
r(T − t)− log(K) + log(St)

)
.

Plug this into the above expression, the claim is checked. Thus we see a surpris-

ingly simple result: ∂V
∂S

(t) = N(d1(t, St)).
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5 Predicting the future price of Euro Call option

So we see that the partial derivative of V with respect to S plays an important role

in hedging. Indeed the Greeks are just various partial derivatives of V with respect

to different parameters in the Black-Scholes model: t, r, σ, T, S. Some of them show

up more ofen than others. In particular, two more Greeks that are important for our

purpose are the ones that appear in Ito’s formula:

Θ(t) :=
∂V

∂t
(t)

Γ(t) :=
∂2V

∂S2
(t),

and of course previously we have

∆(t) :=
∂V

∂S
(t).

Note that in this way the Greeks are random processes. They are functions of t

and St. Their use is to measure the sensitivity of the option price with respect to

the change of other parameters in the model. Again in general it may be difficult

to compute the Θ,Γ of a general derivative. But if we specialize to certain form of

φ(ST ) then the computation can be doable. In particular, for the Euro-Call option:

Γ(t) =
1

σSt
√

2π(T − t)
e−

d21(t,St)

2

Θ(t) = −re−r(T−t)KN(d2(t, St))−
1

2
σ2S2

t Γ(t).

The formulas are complicated, but they are explicit and one can compute these

quantities provided St, σ, r, T are given. Also at time t, using Black-Scholes formula

we also know Vt. Therefore, Ito’s formula gives for a small change in time t+ δ

Vt+δ ≈ Vt +
(
Θ(t) +

1

2
Γ(t)σ2S2(t)

)
δ + ∆(t)(St+δ − St).

Note: The book used Vnew for Vt+δ and only consider the case t = 0. So their

formula is simpler than ours and our formula is slightly more general.
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